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Mathematical expressions for the response of a flow-through system for reactor
monitoring have been obtained considering the transfer function formalism, where the
output of a linear system to an arbitrary input signal could be known by means of the
transfer function of this linear system. A transfer function without and with a pseudo-
first order chemical reaction based on an axial dispersion model is proposed. These
transfer functions allow the description of a great variety of situations as the dynamic
response of the system equations against impulse, step and pulse perturbations. Two
empirical parameters related with the diffusion coefficient of the solute and geometri-
cal magnitudes of the flowing system are proposed. The model has been checked experi-
mentally studying the dispersion of different non-reacting dye solutions and the kinetics
of phenolphthalein decolouration in alkaline media.

KEY WORDS: dispersion model, diffusion, continuous flow analysis, FIA modelling,
residence time distribution function

1. Introduction

One purpose of chemical engineering is the optimisation of a chemical reac-
tion in an industrial scale. That implies an optimum design of the reactor based
on a set of economical and physicochemical restrictions imposed by the sys-
tem under study. Therefore, the knowledge of accurate and reliable kinetic data
obtained in the laboratory is fundamental for this purpose. Factors as the labo-
ratory reactor configuration, the sampling procedure and the analysis of product
composition should be considered as a part of the experimental work in order to
understand the observations done in these kinetic studies [1, 2].

Because of the kinetic character of this kind of experiments, the modelling
of the measuring instrument together with the reactor model is highly recom-
mended when the time response of the sensor is of the same order of magnitude
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as the process which we want to measure. The measurement step implies gen-
erally the sampling and acquisition of physical quantities, like pressure or tem-
perature, with chemical ones, like product composition and concentrations. Thus,
analytical methods are always linked with chemical engineering to monitor and
control the industrial processes and the fastest available analytic method will be
the preferred when different methods are applicable. Some of them allow know-
ing the concentration of the substance of interest in situ, in the reactor, but the
sampling of the reactor and the analysis of the sample ex situ is a more common
practice.

From the chemical engineering point of view, flow injection analysis (FIA)
is an attractive analytical method because it enables relatively fast sampling and
fast chemical analysis [3, 4]. However, the main limitation of this technique is
the physical phenomena involved in FIA: the dispersion of the solute in a fluid
flowing through a tube. A basic FIA system is composed by a more or less
complex tubing network, a fluid impulsion device, e.g. a peristaltic pump, and
a measuring or detection cell. Each of these components contributes to physi-
cal dispersion and then, to the observed response of the system [5]. Although
FIA is a specific technique developed in the chemical analysis context, the theo-
retical concepts used for its mathematical development are shared with chemical
engineering.

The proposed theoretical models to explain the FIA dispersion phenome-
non, can be grouped in three different categories: (i) diffusion–convection mod-
els, (ii) tank-in-series models, and (iii) semiempirical models.

The first group tackles with the problem of solving the continuity equation
for the flow of a solute in a conduction. Depending on the geometrical defini-
tion of the problem, the continuity equation leads to different partial differential
equations. The most simple and intuitive case is to consider the dispersion of a
soluble substance in a fluid flowing in a tube as an effect of the combination of
a diffusive and a convective mass transport. This problem was early treated by
Taylor [6, 7] and Aris [8] and has recently been generalised by Westerterp et al.
[9]. Although the partial differential equation governing the diffusion–convection
process could be written in different ways to account with varied phenomena
[10], all these models agree with the fact that the radial diffusion of the solute
contributes significantly to the dispersion of the sample in the conduction. Tay-
lor’s equation summarises this fact and has mainly been used to calculate diffu-
sion coefficients of soluble substances [6, 11, 12].

The second group of theoretical models has been developed borrowing
concepts from chemical engineering which deal with non-ideal flow in chemical
reactors [13, 14]. In this case, the FIA manifold is considered as a series of ideal
continuous stirred tank reactors that causes the dispersion of the solute from one
reactor to the next. The advantage of this model is its simplicity [15, 16] but the
obtained parameters characterising the dispersion are complex to interpret and
use because of their statistical nature.
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Finally, the third group of FIA models are based on experimental data
[5], numerical simulations derived from resolution of the diffusion–convection
partial differential equations [17, 18] or from simulation of random processes
[19]. These models provide phenomenological equations that relate the calculated
magnitudes as the dispersion or the time of residence to magnitudes as the tube
diameter, its length, the diffusion coefficient of the solute, the temperature, etc.,
which can be modified by the user in the computational program. An empirical
confirmation of these expressions is not always possible because the phenomena
involved in an experimental setup implies the interrelation of various physical
properties and no one can be modified without the perturbation of the rest of
the parameters. Thus, the generalisation of these models is in fact cumbersome
to be implemented for reactor monitoring and then should be considered care-
fully.

This work deals with the modelling and characterisation of flow injection
systems for chemical reactor monitoring. The approach used here is the defini-
tion of a transfer function describing the dispersion process and the suggestion
of an experimental and mathematical procedure to characterise it. Any physical
system that can be described by a linear differential equation with all their values
initially set to zero, can be modelled through a transfer function [20, 21]. If we
suppose a system which is perturbed by a signal S(t), it will respond to this per-
turbation giving the response R(t). Considering the convolution theorem, both
signals S(t) and R(t) or their Laplace transform, s(p) and r(p) respectively, are
related with the transfer function of the system, h(p) through r(p) = s(p) ·h(p).
The transfer function proposed in this work defines two dispersion parameters
that should be evaluated empirically in order to characterise the flowing system.
If different dynamic processes are supposed in the reactor, the dynamic equation
of the measured response as a function of the dispersion parameters can be cal-
culated out from the transfer function of the system. Simple cases as the step
and pulse perturbations will be shown in this paper with special attention on
the determination of the dispersion parameters. Other cases such as the effect of
the measuring-cell volume, first order kinetics and gas–liquid mass transfer will
also be considered in this work. The aim of this work is to show the advanta-
ges of the transfer function formalism against other methodologies for obtaining
analytical expressions of the response and for the interpretation of flow injec-
tion and continuous analysis systems. Experimental results for non-reacting and
reacting systems agree with the theoretical predictions obtained by this way.

2. Transfer function for mass dispersion in continuous flow systems without
chemical reactions

The monitoring of a chemical reactor using a flow injection system implies
to set up the equipment depicted in figure 1. A continuous flow of solution
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Figure 1. Experimental setup for the monitoring of a kinetic process in a chemical reactor by Flow
Injection techniques. The measured response R(t) at the output is the result of the dispersion of the
input signal, S(t). This dispersion can be represented by the transfer function h(p) in the Laplace
domain. S(t) can be any time-varying concentration perturbation caused by any kinetic process in

the reactor. In the scheme, a gas-liquid mass transfer process has been considered.

from the reactor to the detector is impelled by a peristaltic pump. If the sub-
stance of interest is coloured or absorbs light in the UV region, i.e. the tex-
tile dyes or the ozone respectively, its evolution in the reactor can be followed
by spectrophotometry. Experimentally it has been observed that if the FIA
tube is initially absent of coloured substance and in the reactor the concentra-
tion of this substance remains constant, the observed response in the detector
looks as a S-shaped (sigmoidal) curve as it is shown in figure 2, when a sol-
ute step is applied. The shape of this response differs from which is theoreti-
cally expected for a plug-flow model without chemical reaction, so the observed
response should be attributed to the dispersion phenomena in the conduction.

In order to state the problem, consider the equation for mass transport of
a solute flowing through a cylindrical pipe in laminar regime [6, 8]:

∂C

∂t
= Dm

(
∂2C

∂r2
+ 1

r

∂C

∂r
+ ∂2C

∂x2

)
+ u0

(
1 − r2

R2

)
∂C

∂x
(1)

where r and x are the radial and axial coordinate respectively, R the tube radius,
u0 the maximum flow rate in the center of the conduction and Dm is the molec-
ular diffusion coefficient. The laminar regime is ensured in narrow tubes as



A. Abad et al. / On transfer function formalism 545

        

0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

time (s)

R
el

at
iv

e 
A

bs
or

ba
nc

e
 8.94 cm s-1

 7.69 cm s-1

 6.47 cm s-1

 5.20 cm s-1

 3.94 cm s-1

 2.64 cm s-1

Figure 2. Concentration response of the flowing system against a step perturbation of Tartrazine
dye solutions. Each curve is recorded in triplicate at different flow velocity. T = 293 K, [Tartrazine]

= 4.86 × 10−5 M, L = 3 m, cell-flow volume = 80 µl, λ = 427 nm.

those used in flow injection systems, then this hypothesis will be assumed in
the following. Because the axial length in a flow system is several orders of
magnitude higher than the tube radius, this equation is commonly reduced to
the one-dimensional dispersion–convection equation [3, 10, 22, 23]. A more for-
mal approach based on the method-of-moments reduces the microcontinuum
transport equation (1) to a macrocontinuum one-dimensional transport equation
which is, on the other hand, the basic methodology of macrotransport theory
[8, 24]:

∂C

∂t
= Da

∂2C

∂x2
− u

∂C

∂x
(2)

Here C should be understood as the area-average concentration, Da the macro-
scale convection dispersivity coefficient which accounts for the radial and axial
dispersion of the solute in the tube and u is defined as the area-average axial
velocity of the fluid in the tube. This equation accounts for the dispersion phe-
nomena in a circular tube without chemical reaction, but because the chemi-
cal reactions usually happen uniformly, it is common to add to this equation a
kinetic term that does not modify substantially the results as it will be shown
later. The diffusion coefficient Dm of equation (1) has been changed here to the
dispersivity coefficient Da because the simplification of the differential equation
involves a change on the interpretation of the constants defining the physical
problem [6, 8]. For circular tubes, the dispersivity coefficient is given by [6, 8, 24]:

Da = Dm + u2R2

48 Dm
(3)
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where Dm is the molecular diffusion coefficient of the solute and R the inner
radius of the dispersion tube.

Considering that the concentration in eq. (2) should be always bounded, a
general solution can be calculated out applying the Laplace transform with ini-
tial conditions set to zero, C(x, t = 0) = 0:

c(x, p) = C2(p) exp
(

u x

2 Da

)
exp

[
−x

D
1/2
a

(
p + u2

4 Da

)1/2
]

(4)

where c(x, p) is the Laplace transform of the concentration and C2(p) is a con-
stant to be evaluated from the boundary conditions. From here, references con-
cerning flow injection systems deals with the application of different boundary
conditions to obtain the temporal response of the system at x = L [22, 23].
Although this procedure has effectively been proved, it has the inconvenience
that is not general for every physical system and in presence of chemical reac-
tions can lead to complex analysis as well.

In the following, the concentration should be visualised as a perturbation
of the flowing system applied at x = 0 and a response read at x = L. The trans-
fer function of a linear system with initial conditions set to zero is defined as
the ratio between the system output and the perturbation input in the Laplace
domain. Then, considering that at the beginning of the dispersion tube an arbi-
trary perturbation C(0, t) is applied, from equation (4) the transfer function for
the dispersion phenomenon, h(p), is deduced:

h(p) = c(L, p)

c(0, p)
= exp

[
αβ − α

(
p + β2)1/2

]
(5)

with α = L/D
1/2
a and β = u/2D

1/2
a , which defines two dispersion parameters

which should be obtained with experiments. Formally, the only unknown param-
eter of the system is the dispersivity coefficient, but because equation (2) is an
approximation of equation (1) it is more convenient to define and maintain these
two dispersion parameters for the full characterisation of the system, analysing
subsequently the behaviour of these parameters for different operating condi-
tions.

The physical meaning of α and β cannot be precisely defined by dimen-
sional analysis but few reasons suggest that these parameters could be consid-
ered as empirical coefficients to be calculated out from the experiments. First,
the differential equation (2) from which the transfer function has been obtained
does not result from a rigorous deduction of the original one (equation (1)).
Then, these parameters collect some of the information of the original differ-
ential equation lost in the simplification step. Second, along the flow injection
manifold there could be pipe fittings or elements that modifies the velocity pro-
file in the tube and then, the magnitude u expressed in equation (2) accounts
for the average of a distributed property. And third, the presence of these pipe
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fittings along the tube can increase the true length of the conduction in some
quantity, leading to an effective length of the conduction, that only can be evalu-
ated with an experiment. Thus, the use of the dispersion transfer function makes
advisable to consider the dispersion parameters α and β as fit parameters to be
calculated out from experimental data in order to characterise the flow injec-
tion system. Although the physical meaning of these two parameters is not triv-
ial, from a phenomenological point of view the parameter α is related with the
time lag of the signal, increasing this delay as α does (see figure 2). On the other
hand, the parameter β is mainly related with the dispersion of the solute in the
tube, decreasing the slope in the inflexion point as β increases. That means that
as β increases, the spread of the solute along the tube is greater, as it could be
deduced from figure 2 for slow fluid velocities.

The deduction of the transfer function (5) simplifies appreciably the proce-
dure for the evaluation of the time-dependent concentration curves for complex
systems. In the next section the concentration–time curves for few common per-
turbations and other physical situation without chemical reaction will be deduced.
Later, the chemical reaction problem using the same formalism will be developed.

2.1. Step and pulse concentration input

The simplest way to carry out a dispersion experiment is by using the clas-
sical manifold for FIA technique switching between the carrier and the solu-
tion until a steady state has been reached. In these circumstances, the solution
is injected through the dispersion tube in which initially the solute was absent.
The applied perturbation can be written as

C(x = 0, t) = C0 U(t) (6)

where U(t) is the unit step or Heaviside function. Combining the Laplace trans-
form of this function with equation (5), the response of the system is

C(L, t) = L−1
{
C0

1
p

h(p)

}
= C0

α

2π1/2

∫ t

0
θ−3/2 exp

[
−(α − 2βθ)2

4θ

]
dθ (7)

where L−1 is the inverse Laplace transform operator. If we define the new vari-
ables

y = α + 2βθ

2θ1/2
(8)

z = α − 2βθ

2θ1/2
(9)

the equation (7) can be rewritten as
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C(L, t) = 1
2
C0

{
Erfc

(
α − 2βt

2t1/2

)
+ exp (2αβ) Erfc

(
α + 2βt

2t1/2

)}
(10)

where Erfc(x) is the complementary error function [25]. For convenience let us
define the new function FS(t), which represents the response of a unit step per-
turbation for a pure dispersion process:

FS(t) = 1
2

{
Erfc

(
α − 2βt

2t1/2

)
+ exp (2αβ) Erfc

(
α + 2βt

2t1/2

)}
(11)

There are accurate and fast algorithms which calculate the error function in
equation (11) more efficiently than the particular integral defined in (7). Thus,
this last function is advantageous in order to calculate the parameters α and β

from experimental data and was used to obtain the results shown bellow.
On the other hand, classical flow injection analysis (FIA) consists on the

transport of a small sample volume injected into a carrier stream, flowing towards
a chemical detector [3, 4]. This situation is similar to consider a pulse of concen-
tration of duration τ . It is important to insist here that in classical FIA the per-
turbation is similar to a pulse and the differences concern about the boundary
conditions of the problem. So, only a pure pulse perturbation will be treated here.

Using the Heaviside function, the pulse perturbation can be written as:

C(0, t) = C0 {U(t) − U(t − τ)} (12)

where τ is the duration of the pulse. Using the properties of the Laplace trans-
form, the convolution theorem and considering the definition of FS(t) (equation
(11)), it could be demonstrated that the response of the system is:

C(L, t) = C0 ·
{

FS(t), t < τ

FS(t) − FS(t − τ), t � τ
(13)

This function has a maximum which generally is used in analytical chemistry
as the measured magnitude in FIA. In this scientific context, the ratio between
the input concentration and the concentration at the maximum is called “dis-
persion”, which depends on the liquid flow, the tube length and the dispersion
coefficients in a complex way [3, 4].

2.2. Effect of the volume of the cell

Flow Injection Analysis is the result of the combination of a classical
analytical method with a pumping and an injection system which allows the con-
tinuous measuring of the analyte in a flowing cell. Electrochemical and spec-
troscopic techniques are common methods used in the detection step [3, 26]. In
order to enhance the detection limit of the analytical method, it is a common
practice in FIA to use flowing cells of large volume, in comparison of the flow
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rate in the tube, fitted to the flow injection system manifold. This volume per-
turbs the interpretation of the measured response because the reading is the
result of an average property measured in the whole volume of the cell. A first
approach to analyse the influence of the measuring cell volume is to consider it
as a continuous stirred tank (CST) coupled with the flow injection system.

From the mass balance equation of a CST it can be demonstrated that if
the substance to be measured is initially absent in the tank, the transfer function
which describes the response of this system is

hCST(p) = 1
τvp + 1

(14)

where τv is the hydraulic retention time of the tank. Because the dispersion
through the FIA manifold and the mixing in the measuring cell are two succes-
sive steps, the transfer function for the whole process is the product of the two
independent transfer functions:

f (p) = 1
τv p + 1

exp
[
αβ − α

(
p + β2)1/2

]
(15)

Let us consider now that the applied perturbation in the FIA system is a step
concentration described by equation (6). In this case the measured response of
the system will be written as

C(L, t) = C0

(
FS(t) − 1

2
exp

[
α(β − m) − t

τv

]

×
{

Erfc
(

α − 2mt

2t1/2

)
+ exp (2αm) Erfc

(
α + 2mt

2t1/2

)})
(16)

where m = √
β2 − τ−1

v . As the retention time τv decreases, the measured response
approaches the ideal dispersion response described by equation (10). Conversely,
as the retention time increases the response vanishes as a result of the dilution
effect in the flow cell. Thus, according to the knowledge about the FIA tech-
niques, the flow cell used in continuous monitoring of chemical reactors should
be the smallest possible to reduce the distortion of experimental data.

2.3. An academic example: the gas–liquid mass transfer

Finally, let us consider now the monitoring of a time-dependent process
without chemical reaction such as a gas–liquid mass transfer process. This prob-
lem will be considered here just from a theoretical point of view in order to show
the versatility of the transfer function formalism for continuous flow techniques.
Suppose we have a gas such as the ozone, which absorbs light in the ultraviolet
region with its maximum absorbance at 254 nm [27, 28, 29]. This property allows
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to set up a flow injection system such as depicted on figure 1 for the determina-
tion of this gas dissolved in water [30]. Ozone is a strong oxidising agent useful
for the treatment of organic compounds present in wastewater resistant to con-
ventional wastewater treatment processes. The effectiveness of ozonation process
depends, among others, on the gas–liquid mass transfer coefficient, which repre-
sents the transfer rate of the ozone gas to the solution [27].

Several simple macroscopic models for the gas–liquid transfer process pre-
dict a concentration–time evolution in the liquid phase as a saturation curve:

C(t) = Csat (1 − exp(−kLa · t)) (17)

where Csat is the saturation concentration and kLa is the mass transfer coeffi-
cient [27, 31]. This parameter can only be characterised through dynamic exper-
iments because the progressive character of the gas dissolution process, then the
FIA could be a good analytical method to follow the ozone concentration in the
reactor. However, the main difficulty of this method is the interpretation of the
experimental data due to the dispersion phenomenon. Combining the transfer
function of the dispersion process (equation (5)) and the Laplace transform of
the saturation curve for the dissolution of a gas in water (equation (17)), after
Laplace inversion, the response read in the detector can be written as

C(L, t) = Csat

(
FS(t) − 1

2
exp [α(β − n) − kLa · t ]

×
{

Erfc
(

α − 2nt

2t1/2

)
+ exp (2αn) Erfc

(
α + 2nt

2t1/2

)})
(18)

where n =
√

β2 − kLa. The equation (18) shows that the collected data in the
detector depends on the dispersion of the dissolved gas in the tubes and on
the gas-to-liquid dissolution rate in the reactor. The first term of the right hand
of the above equation corresponds to the step response for the ozone in water,
caused by the dispersion in the flowing system. No information about the mass
transfer rate is contained in this term but values as the saturation concentra-
tion or the dispersion parameters for the ozone will be necessary to evaluate this
function. So, in an independent experiment with water saturated in ozone, the
dispersion parameters should be determined previously to use the equation (18).
Note that as the transfer process is faster, the coupling between the kinetic and
the dispersion process vanishes.

3. Transfer function for mass dispersion in continuous flow systems
with chemical reaction

As a consequence of the precedent analysis, it is worthwhile to consider
now the monitoring of chemical reactions with flow systems. The first required
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step to begin this analysis is to reformulate the dispersion problem with a chem-
ical reaction. The conservation equation (1) does not consider the mass appari-
tion or disappearance caused by a chemical reaction, then a source term should
be added. Second, the chemical reaction itself should be defined through its
kinetics before to state the equations. Let us suppose the easiest case where
A + B → Products and the reaction is of the first order for both reactants.
In this case, the governing equations for the dispersion-reaction process can be
written as

∂CA

∂t
= DA

(
∂2CA

∂r2
+ 1

r

∂CA

∂r
+ ∂2CA

∂x2

)
+ u0

(
1 − r2

R2

)
∂CA

∂x
− k2CACB

∂ CB

∂t
= DB

(
∂2CB

∂r2
+ 1

r

∂CB

∂r
+ ∂2CB

∂x2

)
+ u0

(
1 − r2

R2

)
∂CB

∂x
− k2CACB




(19)

where k2 is the second order rate constant of the chemical reaction. In this case
we have a system of coupled partial differential equations that should be sim-
plified to obtain an analytical solution. First, let consider a one-dimensional
approach for the dispersion phenomenon. Thus, every equation in system (19)
can be written as equation (2) adding the kinetic term. Secondly, suppose that
the concentration of A is what we measure with our instrument. Then, we can
define two extreme situations: (i) the concentration of B in the tube (0 < x < L)
is greater than the concentration of A; (ii) the concentration of B vanishes at the
entry of the tube.

Let us to suppose the first case where the reactant B is in excess. We can
assume the quasi-steady state hypothesis and then, CB = CB0 = cnst. Thus, the
equation (19) for the measured component in the system, reduces to

∂ CA

∂t
= DA

∂2CA

∂x2
− u

∂CA

∂x
− k′

1CA (20)

where k′
1 is the pseudo-first order rate constant of the reaction (k′

1 = k2CB0). This
equation differs with equation (2) in the kinetic term and then, the transfer func-
tion (5) cannot be applied to this problem as in the precedent sections.

Applying the Laplace transform method explained above to solve equation
(20), the transfer function for a dispersion with a pseudo-first order chemical
reaction process is

g(p) = exp
[
αβ − α

(
p + q ′ 2)1/2

]
(21)

where α and β are the dispersion parameters and q ′ = √
β2 + k′

1. Once this equa-
tion is obtained, the response of the system against every kind of perturbation
can be deduced. From a theoretical point of view, the response against a step
perturbation is the most interesting one because it can be easily fulfilled in the
laboratory. Using eq. (6), the concentration response in the system is
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C(L, t)= 1
2
C0 exp

[
α(β − q ′)

] {
Erfc

(
α − 2 q ′t

2t1/2

)
+ exp

(
2αq ′) Erfc

(
α + 2q ′t

2t1/2

)}

(22)

The response of the system is very similar to the pure step concentration, equa-
tion (10) although it includes an exponential term. This term accounts for
the steady state concentration at the end of the conduction because the term
between brackets in equation (22) approaches to one as t increases. The disper-
sion process is modified by the fluid flow rate in the conduction. If the steady
state value of the concentration is obtained experimentally for different flow
rates, a non-linear regression fit can be used to obtain the kinetic rate constant
of the chemical reaction.

Lets now suppose the second case where the concentration of reactant B is
totally consumed at the beginning of the conduction. In this case the rate con-
stant k′

1 approaches zero and the reaction–dispersion equation (20) can again be
reduced to equation (2). Then, the dispersion transfer function (5) can be applied
in this situation simply considering the time dependence of the concentration of
A inside the reactor but not in the tube. Assuming the situation depicted on fig-
ure 1 where the perturbation S(t) is CA(t) and supposing that:

CA(t) = C0 exp (−k1t) (23)

the convolution theorem allows to calculate the expected response R(t) read in
the detector as:

C(L, t)= 1
2
C0 exp [α(β − q) − k1t ]

{
Erfc

(
α − 2qt

2t1/2

)
+exp (2αq) Erfc

(
α + 2qt

2t1/2

)}

(24)

where q =
√

β2 − k1. Note that in this case there is not a steady state concen-
tration because as t increases, the concentration approaches zero asymptotically.
Then, a log-plot of the concentration vs. time leads to a line which slope is equal
to the chemical rate constant k1.

Equation (22) stands for the time-evolution of the A reactant along the dis-
persion tube. Then, if the pipe is envisaged as a chemical reactor, this equation
describes the behaviour of a plug flow reactor when dispersion is present. This
situation is not the most advisable for reactor monitoring because concentrations
in the reactor change simultaneously with the concentration towards the detec-
tor. Thus, both equations (22) and (24) should be combined when a chemical
reaction takes place in the reactor and in the dispersion tube:

C(L, t) = 1
2
C0 exp

[
α(β − q ′′) − k1t

]

×
{

Erfc
(

α − 2q ′′t
2t1/2

)
+ exp

(
2αq ′′) Erfc

(
α + 2q ′′t

2t1/2

)}
(25)
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where in this case q ′′ = √
β2 + k′

1 − k1. Obviously this last equation is more
complex to treat than equations (22) or (24) since in this equation the kinetic
constants are coupled with each other and then a loss of accuracy in its deter-
mination should be expected. The rate constants k1 and k′

1 have been considered
different intentionally because the conditions in the reactor and in the flowing
tube can differ. If both constants are equal, equation (25) can be simplified and
the kinetic constant k1 is easily obtained.

Summarising, the formulation of the reaction-dispersion problem implies
the solution of the system of coupled partial differential equation (19). A sim-
plified dispersion transfer function (equation (21)) can be deduced when steady
state kinetic hypothesis is applied. In some experimental circumstances equa-
tion (21) can be reduced to (2) and then the kinetic rate constant determined
through equation (24). It is important to keep in mind that the deduction of
equation (21) implies a number of severe simplifications and the experimental set
up should always account for them.

4. Experimental

In order to validate the dispersion model developed in the precedent sec-
tion, basic dispersion experiments were carried out using the experimental set-
up depicted in figure 1. Two water soluble dyes (Tartrazine and Orange II)
were used to confirm the validity of equations (10) and (13) for solute step
and pulse perturbation, respectively. The consistency between the calculated dis-
persion parameters and the experimental operation conditions has also been
checked with this data set. Equations (22) and (24) related with dispersion cou-
pled with chemical reaction were analysed considering the fading of phenol-
phthalein in alkaline media.

A system based on a peristaltic pump commonly used in FIA experiments
(Gilson Miniplus 3) was set up for the continuous flow measurements. Teflon
tubes which length ranges from 0.75 to 3.0 m and 0.8 mm of inner diameter was
used to connect the reactor with the detector. The generation of the steps and
pulses was done with a three way injection valve (Rheodyne model 5020) allow-
ing the switching between distilled water and the solution under study. The sam-
ple and reactive flows towards a Suprasil� quartz flow cell placed in UV–Vis
spectrophotometer (Unicam Helios γ ). Two flow cells (Hellma Mod. 178.710-
QS and 178.712-QS) with 10 mm optical path length and a volumes of 80 and
15µl, respectively were used. The data were collected and the equipment con-
trolled with a software developed in our laboratory based on Labview� soft-
ware. The dispersion parameters α and β and theirs confidence intervals were
calculated using the non-linear regression routines defined in the software Math-
ematica� based on the Levenberg–Marquardt algorithm.

For experiments consisting on the injection of concentration pulses and
steps in the carrier, a solution of 4.86×10−5 M of Tartrazine (Acid Yellow 23, CI
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19140, CAS 1934-21-0) provided by Color-Center S.A. was used. This substance
shows an absorbance maximum at 427.0 nm and the linearity between the absor-
bance at this wave length and the dye concentration is guaranteed when the
absorbance is below 1.0. The second used dye was the Orange II sodium salt
(Acid Orange 7, CI 15510, CAS 633-96-5) provided by Sigma–Aldrich (ref. O-
4505). The absorbance of this substance was measured at 438.0 nm. Working
solutions consisted in 10−5 M solutions adjusted at pH = 5 with HCl.

The chemical reaction considered for the analysis of equations developed in
section 3 is the decolouration of the phenolphthalein (Merck PA, ref. 107233,
CAS 77-09-8) in alkaline media. This reaction can be considered irreversible
when temperature is below 35◦C and additionally, in high enough alkaline
media, the kinetics can be considered as an example of pseudo-first order reac-
tion [32, 33]. All other chemicals used in this work were of analytical degree.
Millipore Elix 3 deionised water was used to prepare all solutions in the experi-
ments.

5. Results

The response of the continuous flow system against a Tartrazine step for
different flow velocities is shown in figure 2. As the flow rate increases, the inflex-
ion point of the curve moves to the left of the plot increasing its slope. That
means that the dispersion process decreases with the increase of the fluid veloc-
ity, or conversely, as the flow velocity decreases, the importance of the molecular
diffusion of the dissolved substance increases, and then, the dispersion of the sol-
ute along the tube. The results shown in figure 2 have been obtained with a tube
of 3.0 m long at room temperature, measuring the absorbance at 427 nm using a
quartz flowing cell with a volume of 80 µl. Parameters α and β calculated using
equation (10) with their error interval calculated for a confidence level of 95%
are shown in figure 3a and b, respectively. Open symbols concern data showed
in figure 2 with flowing cells of 15 and 80 µl, and filled ones have been obtained
with similar experiments with a tube length of 2.43 m and a 80 µl flowing cell.

The analysis of figure 3a and b leads to some conclusions. First, the volume
of the flow-cell has no effect on the observed data because the calculated α and
β parameters are statistically equivalent in the sense that the confidence inter-
vals overlap each other when different flow-cell have been used. This assertion
has also been confirmed calculating out the dispersion parameters and the flow-
cell residence time, τv, using equation (16) and the same data set. In this case
the quality of the fit was not improved, but the obtained hydraulic residence time
was very different to that theoretically expected. That means that the last calcu-
lated parameters have not physical meaning in the sense that they do not vary as
it is expected from its definition and should be considered as the numerical out-
put of the minimisation routine. This is the result of using non-linear regression
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Figure 3. Dispersion α (a) and β (b) parameters calculated from steps experiments collected in
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from other of 2.43 m. The volume of the flow-cell is indicated in the legend.

techniques, which do not ensure the correctness of the calculated values param-
eters just with the convergence of the model with the experimental data.

Second, from the initial definition of α and β, these parameters should
be independent and directly proportional to the flow velocity, u, respectively.
From experiments it can be observed (see figure 3a and b) that as u increases,
α decreases and β increases linearly. Furthermore, from these definitions and
depending on the plot used for calculations, the dispersion coefficient, Da, ranges
from 20 to 100 cm2 s−1. This value is several orders of magnitude higher than
the usual values for dissolved molecules in water, so other phenomena should
explain this estimation. Aris–Taylor model is a convenient approach to the
problem of the dispersion of a solute in a flowing fluid. In this model, the
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T = 293 K, [Tartrazine] = 4.86 × 10−5 M, λ = 427 nm.

contribution of the radial dispersion to overall process is averaged over the tube
section leading to equations (2) and (3) [6, 8, 24]. Thus, the definition of the α

and β parameters considering Aris–Taylor model should be rewritten as

αT = L
√

48Dm

uR
, βT =

√
48Dm

2R
(26)

According to these equations, αT is inversely proportional to the mean flow
velocity as the experiments confirm, but the dependence between βT and u

remains unclear. A dependence between these parameters can be explained con-
sidering that the dispersion parameter βT comes from the simplification of a
more general differential equation. Any simplification in a differential equa-
tion results in a loss of information in the deduced parameters. Then, unex-
pected dependencies with experimental conditions as those detected here, can be
observed due to the incompleteness of the mathematical model.

Another appropriate representation to obtain relevant information of the
dispersion system is to plot the ratio αT /βT against the inverse of flow velocity
(see figure 4). From equation (26) this quantity should be proportional to the
dispersion length, L, and inversely proportional to the flow velocity. The calcu-
lated lines from the data agree with this prediction but their slopes are greater
than the expected value. Considering that this value should be interpreted as an
equivalent length which considers all the pipe fittings along the tube, this fig-
ure should be used in the calculation of the diffusion coefficient of the solute.
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Figure 5. Comparison between the step and pulse experiments of Tartrazine dye solutions. The flow
velocity for both experiments is 5.20 cm s−1, the dispersion length of 3.0 m and the flow-cell volume
of 80 µl. The pulse duration was set to 20 s. The dispersion parameters were calculated for the step
and the pulse using equations (10) and (23) respectively. The curves are the best fit of the data to

those equations. T = 293 K, [Tartrazine] = 4.86 × 10−5 M, λ = 427 nm.

Combining the results shown on Figures 3a and 4, the value of the diffusion
coefficient of the Tartrazine ranges from 8.78 × 10−6 to 3.80 × 10−6 cm2 s−1.

So far, equation (10) together with Aris–Taylor model has been proved as
a good description of the experimental data set. Now the validity of calculated
parameters should be proved with independence of the experimental set-up, that
is, with independence of the selection of one kind of experiments among others.
All the above dispersion parameters and the magnitudes derived from them have
been obtained with steps experiments, so we need know if these parameters are
correct with independence of the experiment carried out. The simplest way to
prove this is to perform other kind of experiments and to compare the parame-
ters calculated out. With this aim, pulse experiments were designed to compare
the calculated parameters in equations (13) and (10) (see section 2.1). In this
case, the input concentration in the dispersion tube was applied during a known
period of time, τ . In figure 5 the response of the flowing system for a pulse of
20 s is shown. The lines are the best fit curves from experimental data. The data
of three independent series for the step and the pulse are plotted. The disper-
sion parameters calculated out for each experiment are next to the curves. The
agreement between both calculations is remarkable and confirm the validity of
the mathematical equations presented in this paper for the dispersion of a sol-
ute in a flowing system.

Let us consider with more detail the effect of the tube length on disper-
sion. A new series of experiments with Orange II were carried out. We were
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interested in the determination of the diffusion coefficient of this substance in
water simultaneously with the influence of the tube length on dispersion param-
eters. The tube section of our experimental set-up placed between the injection
valve and the detector can be easily changed. Segments of 75, 150 and 225 cm
were intercalated maintaining the other experimental conditions. Figure 6 shows
the effect of the different sections in the response for a Orange II step. Let’s
consider now that the length in the Aris–Taylor model (see equation (26)) is an
equivalent length, Leq, which is the sum of the replaceable section, L, plus a con-
stant λ which accounts with the pipe fittings, pump tubes, valves and all possible
additional sections not considered in the overall distance between the sampling
port and the spectrophotometer cell. This distance λ does not change between
successive experiments. Then, Leq = L + λ. As in the case of the Tartrazine,
the ratio between the two dispersion parameters gives us twice the equivalent
length, Leq (see figure 6). Plotting the slope of each line of Figure 6 against the
length of the interchangeable section, L, a line with slope 2 should be obtained.
Figure 7 shows this result. The slope is close to the expected value and an addi-
tional length of the system, λ = 71 cm, should be considered in further cal-
culations. Using these values, it is deduced that the diffusion coefficient of the
Orange II ranged between 8.5 × 10−6 and 2.1 × 10−6 cm2 s−1.

Until now, the dispersion of a solute without chemical reaction has been
considered. In Section 3 a transfer function for a dispersive reacting solute has
been derived assuming a first order kinetics. In order to check the derived equa-
tions, the reaction of fading of phenolphthalein in alkaline media has been stud-
ied. It is known that this substance when it is used as indicator in an acid-base
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titration, the intensity of the colour at the end point evanesces or disappears
after some period of time. At low temperatures and high pH, this reaction could
be considered as an irreversible pseudo-first order reaction [32, 33].

Previously to the study of the chemical reaction, the characterisation of the
dispersion of the phenolphthalein in water is necessary. Because this characteri-
sation cannot be carried out when this substance is in its coloured form because
of the chemical reaction, the concentration of the phenolphthalein was followed
measuring its ultraviolet absorption band at 275 nm. The dispersion curves are
showed on figure 8. The same dependence between the parameters and the fluid
velocity has been previously observed with the water soluble dyes. The calculated
diffusion coefficient of the phenolphthalein at 298 K with this series of experi-
ments was 7.59 × 10−6 cm2 s−1.

Figure 9 shows the evolution of the absorbance of the phenolphthalein reacting
in alkaline media measured at 550 nm. The curves were recorded at different fluid
velocity. The arrow indicates the increasing velocity. In these experiments, [OH−]0 =
0.2 M and T = 298 K. The lines shows the best fit of data to equation (25) con-
sidering that the kinetics inside the reactor, characterised by the constant k1, does
not differ from the reaction rate along the dispersion tube, characterised by k′

1. As
the velocity of the fluid increases, the maximum of the curve increases because the
lower the residence time in the tube. For long times, all curves coalesces to the same
one as is expected by the exponential term in equation (25).

Modifying the initial pH conditions the rate constant is modified as is
expected for a pseudo-first order reaction. In figure 10 the effect of the OH−
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Figure 8. Dispersion curves of phenolphthalein in aqueous solution measuring the absorbance at
275 nm. [Phenolphthalein] = 1.25 × 10−4 M, L = 150 cm, T = 299 K. The arrow indicates the
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Figure 9. Dispersion curves of reacting phenolphthalein in alkaline media at pH = 13.3. The absor-
bance was measured at 550 nm. [Phenolphthalein]0 = 1.25 × 10−4 M, L = 314 cm, T = 298 K. The
arrow indicates the increasing flow velocity. The curves are the best fit of data to equation (25) with

k′
1 = k1.

concentration is shown. Increasing the pH the reaction evolves faster. Plotting
the calculated reaction rate against the hydroxyl concentration a straight line is
obtained (see figure 11). The slope gives the second order rate constant of the
reaction equal to 1.33 × 10−2 M−1 s−1 at 298 K which agrees with the value pre-
viously reported by Massod et al. [33]
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Figure 10. Effect of the [OH−]0 on the dispersion curves. The phenolphthalein fading follows a
pseudo-first order kinetics. Increasing the pH the reaction is faster. The flow velocity in these exper-
iments was 9.65 cm s−1. [Phenolphthalein]0 = 1.25 × 10−4 M, L = 314 cm, T = 298 K. The curves

are the best fit of data to equation (25) with k′
1 = k1.
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Figure 11. Determination of the second order reaction rate constant for the phenolphthalein fading
in alkaline media. The pseudo-first order rate constants were evaluated from the dispersion curves

of figure 10. The slope gives a rate constant of 0.0133 M−1 s−1 at 298 K.

6. Conclusion

The transfer function formalism for continuous flow analysis systems pre-
sented in this work gives an appropriate theoretical framework to explain some
simple experimental situations for continuous monitoring of chemical reactors.
The advantage of this approach is that allows to combine sequentially the
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transfer function of different phenomena and by Laplace inversion, to obtain the
response of the system. The computational limitations of the method is related
with the difficulties of the Laplace inversion. This limitation can be overcome
always using repeatedly the convolution theorem which at each level of recursion
it will increases the complexity of the obtained solution.

This approach also allows to define semiempirical parameters which are
related with geometrical or physicochemical properties of the system under study,
i.e. tube length and radius, flow velocity, diffusion coefficient, etc. In this work
the definition of two dispersion parameters in combination with the Aris–Taylor
dispersivity coefficient gives a reasonable explanation of the experimental obser-
vations when no chemical reaction occurs. But experiments also reveals some
unattended results. The most significant is the linear dependence of β with the
flow velocity. The discrepancy between the Aris–Taylor model and the experi-
mental observations should be explained as a consequence of the simplifications
steps done to reduce the equation (1) to its one-dimensional form (2). Any sim-
plification of a differential equation leads to a lost of some information about
the original equation. References considering theoretical aspects of dispersion
are prolific, but a lesser number of references focused on the connection between
the macrotransport theory with experiments can be found (see ref. 24 and ref-
erences herein). The transfer function for dispersion processes obtained in this
work has been derived from the macrotransport one-dimensional equation allow-
ing then, to check few aspects of the theory. The theory does not predict how the
experimental behaviour of the parameter β is, and that also has a consequence
for the parameter α. In fact, after the non-linear fitting if the autocorrelation
matrix is analysed, a strong correlation between both experimental parameters is
observed. This correlation is also confirmed by figure 4 where the ratio between
α and β is proportional to the inverse of the flow velocity. Thus, this discrep-
ancy between the experimental observations and the theoretical model could be
the consequence of some presumption in the model which is not appropriate for
the physical system or some other physical phenomena should be considered in
junction with the solute dispersion, i.e. the effect of pulsating flows by the peri-
staltic pumps.

When reacting systems are considered, the same dependence and corre-
lations between the parameters are observed. Although the approximation to
this problem in this work has been done by the analogy with the differential
equation in non-reacting systems, the derived equations show a good agreement
when simple kinetics apply. The advantage of the transfer function formalism
respect other distributed models based on the residence-time distribution func-
tions [1, 13, 14] is that there is a direct correspondence between the statistical
properties of the curve and the calculated dispersion parameters. Moreover, this
approach allows to consider more complex processes such as the presence of
mixing chambers along the dispersion line, chemical reactions outside and inside
the dispersion tube, etc. However, the combination of transfer functions in these
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circumstances should be considered carefully because unexpected correlations
can appear between previously unconnected parameters. A further analysis of
the parameters will prove if the calculated constants are just the result of a non-
linear fitting or if they are consistent with some experimental and physical con-
straints.

Finally an additional commentary about other potential uses of the trans-
fer function formalism applied to continuous analysis systems. The advantage of
a transfer function in a dynamical system is that, at least theoretically, the infor-
mation of an arbitrary perturbation can be recovered from the analysis of the
measured response. In this work the convolution of the transfer function (5) has
been exploited, but the deconvolution of response of continuous analysis systems
should be also considered as an application of transfer function formalism. Fur-
thermore, in this situation the derivation of a transfer function with an exact
physical meaning is not a prerequisite for deconvolving (or unfolding) the sig-
nal. It is sufficient to have a good enough empirical transfer function describing
the system behaviour to proceed to the deconvolution. Thus, the transfer func-
tion formalism presented in this work should be considered as a tool which can
be used to predict the measured response of the system if the applied perturba-
tion it is previously known, or to reconstruct the original perturbation from the
measured response and the transfer function of the system.
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